Format

Send to

Choose Destination
FEMS Microbiol Lett. 1992 Dec 15;100(1-3):217-20.

Utilisation of glycerol and glycerol 3-phosphate is differently affected by the phosphotransferase system in Bacillus subtilis.

Author information

1
Department of Microbiology, University of Lund, Sweden.

Abstract

Glycerol and glycerol 3-phosphate uptake in Bacillus subtilis does not involve the phosphotransferase system. In spite of this, B. subtilis mutants defective in the general components of the phosphotransferase system, EnzymeI or Hpr, are unable to grow with glycerol as sole carbon and energy source. Here we show that a Hpr mutant can grow on glycerol 3-phosphate and that glycerol 3-phosphate, but not glycerol, can induce glpD encoding glycerol-3-phosphate dehydrogenase. Induction of glpD also requires the glpP gene product which is a regulator of all known glp genes. Thus the phosphotransferase system general components do not interfere with the overall regulation of the glp regulon. Revertants of a Hpr mutant which can grown on glycerol carry mutations closely linked to the glp region at 75 degrees on the B. subtilis chromosomal map. This region contains the glpP, the glpFK and the glpD operons. The glpFK operon encodes the glycerol uptake facilitator (glpF) and glycerol kinase (glpK). The present results demonstrate that one of these genes, or their gene products, is the target for phosphotransferase system control of glycerol utilisation. Furthermore we conclude that utilisation of glycerol and glycerol 3-phosphate is differently affected by the phosphotransferase system in B. subtilis.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center