Format

Send to

Choose Destination
See comment in PubMed Commons below
Cell Growth Differ. 1992 Nov;3(11):763-72.

Retinoic acid induces secretion of latent transforming growth factor beta 1 and beta 2 in normal and human papillomavirus type 16-immortalized human keratinocytes.

Author information

1
Department of Chemistry and Biochemistry, University of South Carolina, Columbia 29208.

Abstract

Similar cellular responses are elicited by retinoic acid (RA) and transforming growth factor beta (TGF-beta). We investigated the ability of RA to modulate the production of TGF-beta in normal human keratinocytes (HKc) and HKc lines immortalized by transfection with human papillomavirus type 16 DNA (HKc/HPV16). RA treatment of both normal HKc and HKc/HPV16 resulted in a 2-3-fold induction in secreted levels of latent TGF-beta. The induction in TGF-beta secretion by RA was dose dependent, with significant increases observed with RA concentrations as low as 1-10 nM, and time dependent, with maximal induction occurring about 3 days after initiation of RA exposure. In addition, RA induced intracellular levels of TGF-beta almost 5-fold. Sandwich enzyme-linked immunosorbent assays were used to specifically quantify TGF-beta 1 and TGF-beta 2 secreted by normal HKc and HKc/HPV16 cultured in the absence or presence of RA. RA increased the secreted levels of latent TGF-beta 1 and TGF-beta 2 an average of 2- and 5-fold, respectively, with no major differences in the fold induction between normal HKc and HKc/HPV16. Northern blot analysis of mRNA isolated from HKc/HPV16 demonstrated that RA treatment induced specific transcripts for TGF-beta 1 and TGF-beta 2 about 3- and 50-fold, respectively. RA treatment of HKc had no significant effect on the binding affinity of TGF-beta for its receptors or receptor number. Normal HKc and HKc/HPV16 displayed similar dose-dependent inhibition of proliferation by TGF-beta 1. These studies indicate that RA may regulate growth control in both normal HKc and HKc/HPV16 by enhancing TGF-beta 1 and TGF-beta 2 production, which, after activation at the cell surface, could inhibit cellular proliferation in an autocrine and/or paracrine manner.

PMID:
1334692
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center