Send to

Choose Destination
See comment in PubMed Commons below
Cell Growth Differ. 1992 Nov;3(11):763-72.

Retinoic acid induces secretion of latent transforming growth factor beta 1 and beta 2 in normal and human papillomavirus type 16-immortalized human keratinocytes.

Author information

Department of Chemistry and Biochemistry, University of South Carolina, Columbia 29208.


Similar cellular responses are elicited by retinoic acid (RA) and transforming growth factor beta (TGF-beta). We investigated the ability of RA to modulate the production of TGF-beta in normal human keratinocytes (HKc) and HKc lines immortalized by transfection with human papillomavirus type 16 DNA (HKc/HPV16). RA treatment of both normal HKc and HKc/HPV16 resulted in a 2-3-fold induction in secreted levels of latent TGF-beta. The induction in TGF-beta secretion by RA was dose dependent, with significant increases observed with RA concentrations as low as 1-10 nM, and time dependent, with maximal induction occurring about 3 days after initiation of RA exposure. In addition, RA induced intracellular levels of TGF-beta almost 5-fold. Sandwich enzyme-linked immunosorbent assays were used to specifically quantify TGF-beta 1 and TGF-beta 2 secreted by normal HKc and HKc/HPV16 cultured in the absence or presence of RA. RA increased the secreted levels of latent TGF-beta 1 and TGF-beta 2 an average of 2- and 5-fold, respectively, with no major differences in the fold induction between normal HKc and HKc/HPV16. Northern blot analysis of mRNA isolated from HKc/HPV16 demonstrated that RA treatment induced specific transcripts for TGF-beta 1 and TGF-beta 2 about 3- and 50-fold, respectively. RA treatment of HKc had no significant effect on the binding affinity of TGF-beta for its receptors or receptor number. Normal HKc and HKc/HPV16 displayed similar dose-dependent inhibition of proliferation by TGF-beta 1. These studies indicate that RA may regulate growth control in both normal HKc and HKc/HPV16 by enhancing TGF-beta 1 and TGF-beta 2 production, which, after activation at the cell surface, could inhibit cellular proliferation in an autocrine and/or paracrine manner.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center