Format

Send to

Choose Destination
Int J Immunopharmacol. 1992 Nov;14(8):1363-73.

Stimulation of human monocyte beta-glucan receptors by glucan particles induces production of TNF-alpha and IL-1 beta.

Author information

1
Department of Medicine, Harvard Medical School, Boston, MA.

Abstract

beta-glucans are pharmacologic agents that rapidly enhance host resistance to a variety of biologic insults through mechanisms involving macrophage activation. To determine whether stimulation of the beta-glucan receptors on human monocytes resulted in cytokine production, monolayers of monocytes were incubated with purified yeast glucan particles and measured for tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta) mRNA and protein. By Northern blot analysis, TNF-alpha mRNA was detected within 30 min of incubation with glucan particles, peaked at 2 h, and remained elevated for at least 8 h. Glucan induction of IL-1 beta mRNA followed a similar time-course of initiation and accumulation. By enzyme-linked immunosorbent assays (ELISAs), significant levels of TNF-alpha and IL-1 beta were present in supernatants of glucan-treated cells within 1 h and plateau levels of both cytokines were approached within 4 h. At particle-to-cell ratios of from 0.4 to 18, glucan particles induced dose-dependent increases in TNF-alpha and IL-1 beta mRNA and corresponding increases in TNF-alpha and IL-1 beta proteins. Exposure of monocytes to glucan particles for 0-30 min and washing before continued incubation for 4 h in particle-free buffer induced production and secretion of TNF-alpha and IL-1 beta in a time-dependent fashion compatible with phagocytosis. The pretreatment of monocyte monolayers with trypsin reduced glucan-induced production of TNF-alpha and IL-1 beta in a dose-dependent manner with 5 micrograms/ml of trypsin effecting reductions of greater than 50%. Thus, glucan particles induce human monocyte production of TNF-alpha and IL-1 beta by a mechanism that is dependent on trypsin-sensitive beta-glucan receptors.

PMID:
1334474
DOI:
10.1016/0192-0561(92)90007-8
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center