Format

Send to

Choose Destination
Proteins. 1992 Sep;14(1):29-44.

Probing beta-lactamase structure and function using random replacement mutagenesis.

Author information

1
Department of Genetics, School of Medicine, Stanford University, California 94305.

Abstract

A new analytical mutagenesis technique is described that involves randomizing the DNA sequence of a short stretch of a gene (3-6 codons) and determining the percentage of all possible random sequences that produce a functional protein. A low percentage of functional random sequences in a complete library of random substitutions indicates that the region mutagenized is important for the structure and/or function of the protein. Repeating the mutagenesis over many regions throughout a protein gives a global perspective of which amino acid sequences in a protein are critical. We applied this method to 66 codons of the gene encoding TEM-1 beta-lactamase in 19 separate experiments. We found that TEM-1 beta-lactamase is extremely tolerant of amino acid substitutions: on average, 44% of all mutants with random substitutions function and 20% of the substitutions are expressed, secreted, and fold well enough to function at levels similar to those for the wild-type enzyme. We also found a few exceptional regions where only a few random sequences function. Examination of the X-ray structures of homologous beta-lactamases indicates that the regions most sensitive to substitution are in the vicinity of the active site pocket or buried in the hydrophobic core of the protein. DNA sequence analysis of functional random sequences has been used to obtain more detailed information about the amino acid sequence requirements for several regions and this information has been compared to sequence conservation among several related beta-lactamases.

PMID:
1329081
DOI:
10.1002/prot.340140106
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center