Send to

Choose Destination
Nature. 1992 Oct 1;359(6394):417-20.

Synaptic vesicle-associated Ca2+/calmodulin-dependent protein kinase II is a binding protein for synapsin I.

Author information

Institute of Human Physiology, University of Modena, Italy.


Synapsin I is a synaptic vesicle-associated phosphoprotein that is involved in the modulation of neurotransmitter release. Ca2+/calmodulin-dependent protein kinase II, which phosphorylates two sites in the carboxy-terminal region of synapsin I, causes synapsin I to dissociate from synaptic vesicles and increases neurotransmitter release. Conversely, the dephosphorylated form of synapsin I, but not the form phosphorylated by Ca2+/calmodulin-dependent protein kinase II, inhibits neurotransmitter release. The amino-terminal region of synapsin I interacts with membrane phospholipids, whereas the C-terminal region binds to a protein component of synaptic vesicles. Here we demonstrate that the binding of the C-terminal region of synapsin I involves the regulatory domain of a synaptic vesicle-associated form of Ca2+/calmodulin-dependent protein kinase II. Our results indicate that this form of the kinase functions both as a binding protein for synapsin I, and as an enzyme that phosphorylates synapsin I and promotes its dissociation from the vesicles.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center