Send to

Choose Destination
Eur Biophys J. 1992;21(2):99-116.

The early phase of sodium channel gating current in the squid giant axon. Characteristics of a fast component of displacement charge movement.

Author information

Physiologisches Institut, Universität Zürich, Switzerland.


A fast component of displacement current which accompanies the sodium channel gating current has been recorded from the membrane of the giant axon of the squid Loligo forbesii. This component is characterized by relaxation time constants typically shorter than 25 microseconds. The charge displaced accounts for about 10% (or 2 nC/cm2) of the total displacement charge attributed to voltage-dependent sodium channels. Using a low noise, wide-band voltage clamp system and specially designed voltage step protocols we could demonstrate that this component: (i) is not a recording artifact; (ii) is kinetically independent from the sodium channel activation and inactivation processes; (iii) can account for a significant fraction of the initial amplitude of recorded displacement current and (iv) has a steady state charge transfer which saturates for membrane potentials above +20 mV and below -100 mV. This component can be modelled as a single step transition using the Eyring-Boltzmann formalism with a quantal charge of 1 e- and an asymmetrical energy barrier. Furthermore, if it were associated with the squid sodium channel, our data would suggest one fast transition per channel. A possible role as a sodium channel activation trigger, which would still be consistent with kinetic independence, is discussed. Despite uncertainties about its origin, the property of kinetic independence allows subtraction of this component from the total displacement current to reveal a rising phase in the early time course of the remaining current. This will have to be taken into account when modelling the voltage-dependent sodium channel.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center