Send to

Choose Destination
Clin Chim Acta. 1992 May 15;207(3):185-204.

The measurement of carnitine and acyl-carnitines: application to the investigation of patients with suspected inherited disorders of mitochondrial fatty acid oxidation.

Author information

Human Metabolism Research Centre Department of Clinical Biochemistry, Medical School, University of Newcastle upon Tyne, UK.


We describe an improved radio-enzymatic method for the measurement of carnitine, short-chain acyl-carnitine and long-chain acyl-carnitine in plasma and tissue. An internal standard, hexadecanoyl-[CH3-3H]-carnitine was synthesised and used to improve the determination of long-chain acyl-carnitine. The between and within batch precisions were 10.4 and 7%, respectively. Control data for neonates, infants, children and adults in the fed and fasted state are documented. In addition we confirm the hypocarnitinaemia associated with pregnancy. Patients with medium-chain acyl-CoA dehydrogenase deficiency were studied during episodes of hypoglycaemia. In both fasted controls and patients there were high concentrations of short-chain acyl-carnitine, however in the latter group there were also low concentrations of free carnitine. We suggest that the monitoring of plasma carnitine and its derivatives is a useful adjunct to the investigation of children suspected to suffer from inherited disorders of mitochondrial beta-oxidation. We also describe a sample preparation procedure suitable for high performance liquid chromatographic analysis of specific acyl-carnitines from urine, plasma and tissue homogenates. The recoveries of acetyl-carnitine, octanoyl-carnitine and hexadecanoyl carnitine from urine were 101.5, 95 and 91% and from plasma 99.5, 91.5 and 85.5%, respectively. Acyl-carnitines (C2-C16) were analysed as their p-bromophenacyl derivatives by reverse-phase high performance liquid chromatography using a ternary gradient of acetonitrile/water/triethylamine phosphate. We report ten patients who excreted octanoyl-carnitine, hexanoyl-carnitine and in some cases a small amount of decanoyl-carnitine. In most of these cases suberylglycine and dicarboxylic acids were also detected by GC/MS. We had access to cultured fibroblasts from five of these patients and were able to demonstrate medium-chain acyl-CoA dehydrogenase deficiency by direct enzyme assay.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center