Send to

Choose Destination
J Mol Evol. 1992 May;34(5):449-64.

Comparison of proteins of ADP-glucose pyrophosphorylase from diverse sources.

Author information

Department of Biochemistry, Michigan State University, East Lansing 48824.


The primary structures of 11 proteins of ADP-glucose pyrophosphorylase are aligned and compared for relationships among them. These comparisons indicate that many domains are retained in the proteins from both the enteric bacteria and the proteins from angiosperm plants. The proteins from angiosperm plants show two main groups, with one of the main groups demonstrating two subgroups. The two main groups of angiosperm plant proteins are based upon the two subunits of the enzyme, whereas the subgroups of the large subunit group are based upon the tissue in which the particular gene had been expressed. Additionally, the small subunit group shows a slight but distinct division into a grouping based upon whether the protein is from a monocot or dicot source. Previous structure-function studies with the Escherichia coli enzyme have identified regions of the primary structure associated with the substrate binding site, the allosteric activator binding site, and the allosteric inhibitor binding site. There is conservation of the primary structure of the polypeptides for the substrate binding site and the allosteric activator binding site. The nucleotide sequences of the coding regions of the genes of 11 of these proteins are compared for relationships among them. This analysis indicates that the protein for the small subunit has been subject to greater selective pressure to retain a particular primary structure. Also, the coding region of the precursor gene for the small subunit diverged from the coding region of the precursor gene for the large subunits slightly prior to the divergence of the two coding regions of the genes for the two tissue-specific large subunit genes.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center