Format

Send to

Choose Destination
Am J Physiol. 1992 Apr;262(4 Pt 2):R712-5.

Downregulation of sodium channels during anoxia: a putative survival strategy of turtle brain.

Author information

1
Department of Neurology, University of Miami School of Medicine, Florida.

Abstract

In contrast to mammalian brain, which exhibits rapid degeneration during anoxia, the brains of certain species of turtles show an extraordinary capacity to survive prolonged anoxia. The decrease in energy expenditure shown by the anoxic turtle brain is likely to be a key factor for anoxic survival. The "channel arrest" hypothesis proposes that ion channels, which regulate brain electrical activity in normoxia, may be altered during anoxia in the turtle brain as a mechanism to spare energy. Goals of present research were to test this hypothesis and to determine whether down-regulation of sodium channels is a possible explanation for spike threshold shifts seen during anoxia in isolated turtle cerebellum. We report here that anoxia induced a significant (42%) decline in voltage-gated sodium channel density as determined by studies of the binding of a sodium channel ligand, [3H]brevetoxin. This study demonstrates that sodium channel densities in brain may be regulated by tissue oxygenation or by physiological events associated with anoxia. Moreover, it also suggests that downregulation of sodium channels may be a basis for changes in action potential thresholds, the electrical depression and energy conservation that provide the unique anoxic tolerance of turtle brain.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center