Format

Send to

Choose Destination
See comment in PubMed Commons below
Int J Syst Evol Microbiol. 2003 Sep;53(Pt 5):1485-94.

16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolates: extension of the dataset and proposal of a new lineage within the nitrosomonads.

Author information

1
Lehrstuhl für Mikrobiologie, Technische Universität München, D-85350 Freising, Germany.

Abstract

The phylogenetic relationship of 12 ammonia-oxidizing isolates (eight nitrosospiras and four nitrosomonads), for which no gene sequence information was available previously, was investigated based on their genes encoding 16S rRNA and the active site subunit of ammonia monooxygenase (AmoA). Almost full-length 16S rRNA gene sequences were determined for the 12 isolates. In addition, 16S rRNA gene sequences of 15 ammonia-oxidizing bacteria (AOB) published previously were completed to allow for a more reliable phylogeny inference of members of this guild. Moreover, sequences of 453 bp fragments of the amoA gene were determined from 15 AOB, including the 12 isolates, and completed for 10 additional AOB. 16S rRNA gene and amoA-based analyses, including all available sequences of AOB pure cultures, were performed to determine the position of the newly retrieved sequences within the established phylogenetic framework. The resulting 16S rRNA gene and amoA tree topologies were similar but not identical and demonstrated a superior resolution of 16S rRNA versus amoA analysis. While 11 of the 12 isolates could be assigned to different phylogenetic groups recognized within the betaproteobacterial AOB, the estuarine isolate Nitrosomonas sp. Nm143 formed a separate lineage together with three other marine isolates whose 16S rRNA sequences have not been published but have been deposited in public databases. In addition, 17 environmentally retrieved 16S rRNA gene sequences not assigned previously and all originating exclusively from marine or estuarine sites clearly belong to this lineage.

PMID:
13130037
DOI:
10.1099/ijs.0.02638-0
[Indexed for MEDLINE]

Publication type, MeSH terms, Substances, Secondary source ID

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Ingenta plc
    Loading ...
    Support Center