Format

Send to

Choose Destination
Biol Cell. 1992;76(3):291-301.

Directed movements of ciliary and flagellar membrane components: a review.

Author information

1
Department of Anatomy and Cell Biology, University of Virginia School of Medicine, Charlottesville 22903.

Abstract

The ability to rapidly translocate polystyrene microspheres attached to the surface of a plasma membrane domain reflects a unique form of cellular force transduction occurring in association with the plasma membrane of microtubule based cell extensions. This unusual form of cell motility can be utilized by protistan organisms for whole cell locomotion, the early events in mating, and transport of food organisms along the cell surface, and possibly intracellular transport of certain organelles. Since surface motility is observed in association with cilia and flagella of algae, sea urchin embryos and cultured mammalian cells, it is likely that it serves an additional role beyond those already cited; this is likely to be the transport of precursors for the assembly and turnover of ciliary and flagellar membranes and axonemes. In the case of the Chlamydomonas flagellum, where surface motility has been most extensively studied, it appears that cross-linking of flagellar surface exposed proteins induces a transmembrane signaling pathway that activates machinery for moving flagellar membrane proteins in the plane of the flagellar membrane. This signaling pathway in vegetative Chlamydomonas reinhardtii appears to involve an influx of calcium, a rise in intraflagellar free calcium concentration and a change in the level of phosphorylation of specific membrane-matrix proteins. It is hypothesized that flagellar surface contact with a solid substrate (during gliding), a polystyrene microsphere or another flagellum (during mating) will all activate a signaling pathway similar to the one artificially activated by the use of monoclonal antibodies to flagellar membrane glycoproteins. A somewhat different signaling pathway, involving a transient rise in intracellular cAMP level, may be associated with the mating of Chlamydomonas gametes, which is initiated by flagellum-flagellum contact. The hypothesis that the widespread observation of microsphere movements on various ciliary and flagellar surfaces may reflect a mechanism normally utilized to transport axonemal and membrane subunits along the internal surface of the organelle membrane presents a paradox in that one would expect this to be a constitutive mechanism, not one necessarily activated by a signaling pathway.

PMID:
1305476
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center