Format

Send to

Choose Destination
See comment in PubMed Commons below
J Hepatol. 2003 Oct;39(4):538-46.

Oxidative stress, KLF6 and transforming growth factor-beta up-regulation differentiate non-alcoholic steatohepatitis progressing to fibrosis from uncomplicated steatosis in rats.

Author information

1
Laboratory of Gastroenterology, St. Luc University Hospital, Université Catholique de Louvain, Avenue Hippocrate 10, 1200 Brussels, Belgium.

Abstract

BACKGROUND/AIMS:

Pathogenesis of non-alcoholic steatohepatitis (NASH) remains poorly understood. Cytochrome P450 2E1 (CYP 2E1), cytokines, oxidative stress and activation of hepatic stellate cells seem to play a role in this process. The aim was to determine the potential implication of these factors in the progression from uncomplicated steatosis to steatohepatitis with progressive fibrosis.

METHODS:

Animals were fed a standard diet, a 5% orotic acid-diet (OA) developing hepatic steatosis, or the methionine-choline deficient (MCD) diet inducing steatohepatitis for 2 and 6 weeks. Lipid peroxidation, CYP 2E1 expression and activity, expression of UCP-2, interleukin (IL)-6, transforming growth factor (TGF)beta1, KLF6 mRNAs, and activation of hepatic stellate cells were examined by gas chromatography, high-performance liquid chromatography, Western blotting, quantitative polymerase chain reaction and immunohistochemistry.

RESULTS:

Lipid peroxidation increased in the MCD model whereas only minor changes occurred in the OA model. KLF6 and TGFbeta1 mRNAs were selectively up-regulated in MCD animals. Stellate cell activation, inflammation and collagen deposition only occurred in the MCD group. CYP 2E1 expression and activity increased in the OA group while both decreased in MCD animals. UCP-2 and IL-6 mRNA increased in both groups.

CONCLUSIONS:

In the context of steatosis, lipid peroxidation is associated with inflammation and stellate cell activation with concomitant increase in TGFbeta1 production, possibly through up-regulation of KLF6.

PMID:
12971963
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center