Format

Send to

Choose Destination
See comment in PubMed Commons below
Adv Space Res. 2003;31(6):1575-82.

Tumor suppressor function of Betaig-h3 gene in radiation carcinogenesis.

Author information

1
Center for Radiological Research, College of Physicians & Surgeons of Columbia University, New York, NY 10032, USA. yz93@columbia.edu

Abstract

Interaction between cell and extracellular matrix (ECM) plays a crucial role in tumor invasiveness and metastasis. Using an immortalized human bronchial epithelial (BEP2D) cell model, we showed previously that expression of a list of genes including Betaig-h3 (induced by transforming growth factor-beta), DCC (deleted in colorectal cancer), p21(cipl), c-fos, Heat shock protein (HSP27) and cytokeratin 14 were differentially expressed in several independently generated, radiation-induced tumor cell lines (TL1-TL5) relative to parental BEP2D cells. Our previous data further demonstrated that loss of tumor suppressor gene(s) as a likely mechanism of radiation carcinogenesis. In the present study, we chose Betaig-h3 and DCC that were downregulated in tumorigenic cells for further study. Restored expression of Betaig-h3 gene, not DCC gene, by transfecting cDNA into tumor cells resulted in a significant reduction in tumor growth. While integrin receptor alpha 5 beta 1 was overexpressed in tumor cells, its expression was corrected to the level found in control BEP2D cells after Betaig-h3 transfection. These data suggest that Betaig-h3 gene is involved in tumor progression by regulating integrin alpha 5 beta 1 receptor. Furthermore, exogenous TGF- beta 1 induced expression of Betaig-h3 gene and inhibited the growth of both control and tumorigenic BEP2D cells. Therefore, downregulation of Betaig-h3 gene may results from the decreased expression of upstream mediators such as TGF-beta. The findings provide strong evidence that the Betaig-h3 gene has tumor suppressor function in radiation-induced tumorigenic human bronchial epithelial cells and suggest a potential target for interventional therapy.

PMID:
12971413
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center