Send to

Choose Destination

Hydrolysis of DNA by 17 snake venoms.

Author information

Area Investigación y Desarrollo/Serpentario, Instituto Nacional de Producción de Biológicos, Administración Nacional de Laboratorios e Institutos de Salud, Dr. Carlos G. Malbrán, Ministerio de Salud, Buenos Aires, Argentina.


DNA hydrolysis caused by venoms of 17 species of snakes was studied by different methodologies. Endonucleolytic activity was tested by incubation of the venoms with the plasmid pBluescript and subsequent visualization of the electrophoretic patterns in 1% agarose gels stained with ethidium bromide. DNA was sequentially degraded, from supercoiled to opened circle, to linear form, in a concentration dependent manner. The highest hydrolytic activity was observed in Bothrops (B.) neuwiedii and Naja (N.) siamensis venoms. Exonucleolytic activity was analyzed on pBluescript digested with SmaI or EcoRI. All venoms caused complete hydrolysis after 2 h of incubation. SDS-PAGE analysis in gels containing calf thymus DNA showed that the hydrolytic bands were located at approximately 30 kDa. DNA degradation was studied by radial hydrolysis in 1% agarose gels containing calf thymus DNA plus ethidium bromide and visualized by UV light. Venom of B. neuwiedii showed the highest activity whereas those of B. ammodytoides and Ovophis okinavensis (P<0.05) showed the lowest activity. Antibodies against venom of B. neuwiedii or N. siamensis neutralized the DNAse activity of both venoms. In conclusion, venom from different snakes showed endo- and exonucleolytic activity on DNA. The inhibition of DNA hydrolysis by EDTA and heterologous antibodies suggests similarities in the structure of the venom components involved.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center