Format

Send to

Choose Destination
Chembiochem. 2003 Sep 5;4(9):821-8.

The blasticidin S biosynthesis gene cluster from Streptomyces griseochromogenes: sequence analysis, organization, and initial characterization.

Author information

1
Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA.

Abstract

Blasticidin S is a potent antifungal and cytotoxic peptidyl nucleoside antibiotic from Streptomyces griseochromogenes. The mixed biosynthesis of the compound is evident from the three distinct structural components: a cytosine base, an amino deoxyglucuronic acid, and N-methyl beta-arginine. The blasticidin S biosynthesis gene cluster was cloned from S. griseochromogenes and the pathway heterologously expressed in S. lividans from a cosmid harboring a 36.7-kb fragment of S. griseochromogenes DNA. The complete DNA sequence of this insert has now been determined and evidence suggests a contiguous 20-kb section defines the blasticidin S biosynthesis cluster. The predicted functions of several open reading frames are consistent with the expected biochemistry and include an arginine 2,3-aminomutase, a cytosylglucuronic acid synthase, and a guanidino N-methyltransferase. Insight into other steps in the assembly of blasticidin S was evident from sequence homology with proteins of known function and heterologous expression of fragments of the cluster. Additionally, the gene that directs the production of free cytosine, blsM, was subcloned and expressed in Escherichia coli. Characterization of BlsM revealed that cytidine monophosphate serves as the precursor to cytosine.

PMID:
12964155
DOI:
10.1002/cbic.200300583
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center