Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuroimage. 2003 Aug;19(4):1361-8.

Conflict monitoring in the human anterior cingulate cortex during selective attention to global and local object features.

Author information

  • 1Center for Cognitive Neuroscience and Department of Psychological and Brain Sciences, Duke University, Box 90999, Durham, NC 27708, USA. Weissman@duke.edu

Abstract

Parallel processing affords the brain many advantages, but processing multiple bits of information simultaneously presents formidable challenges. For example, while one is listening to a speaker at a noisy social gathering, processing irrelevant conversations may lead to the activation of irrelevant perceptual, semantic, and response representations that conflict with those evoked by the speaker. In these situations, specialized brain systems may be recruited to detect and resolve conflict before it leads to incorrect perception and/or behavior. Consistent with this view, recent findings indicate that dorsal/caudal anterior cingulate cortex (dACC), on the medial walls of the frontal lobes, detects conflict between competing motor responses primed by relevant versus irrelevant stimuli. Here, we used a cued global/local selective attention task to investigate whether the dACC plays a general role in conflict detection that includes monitoring for conflicting perceptual or semantic representations. Using event-related functional magnetic resonance imaging (fMRI), we found that the dACC was activated by response conflict in both the global and the local task, consistent with results from prior studies. However, dACC was also activated by perceptual and semantic conflict arising from global distracters during the local task. The results from the local task have implications for recent theories of attentional control in which the dACC's contribution to conflict monitoring is limited to response stages of processing, as well as for our understanding of clinical disorders in which disruptions of attention are associated with dACC dysfunction.

PMID:
12948694
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center