Format

Send to

Choose Destination
See comment in PubMed Commons below
Biol Reprod. 2003 Dec;69(6):2029-35. Epub 2003 Aug 20.

Ability of hamster spermatozoa to digest their own DNA.

Author information

  • 1Institute for Biogenesis Research, Department of Anatomy and Reproductive Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96822, USA. sotolong@hawaii.edu

Abstract

Mammalian sperm chromatin is bound by protamines into highly condensed toroids with approximately 50 kilobases (kb) of DNA. It is also organized into loop domains of about the same size that are attached at their bases to the proteinaceous nuclear matrix. In this work, we test our model that each sperm DNA-loop domain is condensed into a single protamine toroid. Our model predicts that the protamine toroids are linked by chromatin that is more sensitive to nucleases than the DNA within the toroids. To test this model, we treated hamster sperm nuclei with DNase I and found that the sperm chromatin was digested into fragments with an average size of about 50 kb, by pulse-field gel electrophoresis (PFGE). Surprisingly, we also found that spermatozoa treated with 0.25% Triton X-100 (TX) and 20 mM MgCl2 overnight resulted in the same type of degradation, suggesting that sperm nuclei have a mechanism for digesting their own DNA at the bases of the loop domains. We extracted the nuclei with 2 M NaCl and 10 mM dithiothreitol (DTT) to make nuclear halos. Nuclear matrices prepared from DNase I-treated spermatozoa had no DNA attached, suggesting that DNase I digested the DNA at the bases of the loop domains. TX-treated spermatozoa still had their entire DNA associated with the nuclear matrix, even though the DNA was digested into 50-kb fragments as revealed by PFGE. The data support our donut-loop model for sperm chromatin structure and suggest a functional role for this type of organization in that sperm can digest its own DNA at the sites of attachment to the nuclear matrix.

PMID:
12930713
DOI:
10.1095/biolreprod.103.020594
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center