Send to

Choose Destination
See comment in PubMed Commons below
J Cell Mol Med. 2003 Apr-Jun;7(2):103-12.

Stemness, fusion and renewal of hematopoietic and embryonic stem cells.

Author information

  • 1Signal Transduction Unit, Ludwig Institute for Cancer Research, Christian de Duve Institute of Cellular Pathology, UCL, Avenue Hippocrate 74, UCL 74+4, Brussels B-1200, Belgium.


Development of replacement cell therapies awaits the identification of factors that regulate nuclear reprogramming and the mechanisms that control stem cell renewal and differentiation. Once such factors and signals will begin to be elucidated, new technologies will have to be envisaged where uniform differentiation of adult or embryonic stem cells along one differentiation pathway can be induced. Controlled differentiation of stem cells will require the engineering of niches and extracellular signal combinations that would amplify a particular signaling network and allow uniform and selective differentiation. Three recent advances in stem cell research open the possibility to approach engineering studies for cell replacement therapies. Fusion events between stem cells and adult cells or between adult and embryonic stem cells have been shown to result in altered fates and nuclear reprogramming of cell hybrids. Hematopoietic stem cells were shown to require Wnt signaling in order to renew. The purification of Wnt proteins would allow their use as exogenous purified cytokines in attempts to amplify stem cells before bone marrow transplantation. The homeodomain protein Nanog has been shown to be crucial for the embryonic stem cell renewal and pluripotency. However, the cardinal question of how stemness is preserved in the early embryo and adult stem cells remains opened.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center