Send to

Choose Destination
Cell Microbiol. 2003 Sep;5(9):637-48.

The effects of reactive nitrogen intermediates on gene expression in Mycobacterium tuberculosis.

Author information

Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.


Nitric oxide (NO) and related reactive nitrogen intermediates (RNI) are effective antimycobacterial agents and signal-transducing molecules. The present study uses microarray analysis to examine the effects of RNI on Mycobacterium tuberculosis gene expression. A common set of 53 genes was regulated by two chemically distinct nitric oxide donors. For a subset of the RNI-inducible genes, evidence exists suggesting that they may play a role in promoting survival of the tubercle bacillus in the host. Results obtained from studies based on a murine experimental tuberculosis model involving nos2-deficient mice suggest that RNI could regulate M. tuberculosis gene expression in vivo. Finally, there is a remarkable overlap between the RNI-inducible regulon and that previously reported to be regulated by hypoxia; and both reactive nitrogen species and anaerobicity upregulate the expression of one and the same putative two-component regulatory response system. Together, the results of this study provide evidence suggesting that (i) RNI play a role in regulating M. tuberculosis gene expression in vivo; (ii) the reactive nitrogen species upregulate genes that may be conducive to the survival of the tubercle bacillus in the infected host; and (iii) RNI and hypoxia may regulate mycobacterial gene expression via overlapping signal transduction pathways.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center