Format

Send to

Choose Destination
See comment in PubMed Commons below
Inorg Chem. 2003 Aug 25;42(17):5259-66.

Hydroxyl radical formation by O-O bond homolysis in peroxynitrous acid.

Author information

  • 1Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA.

Abstract

Peroxynitrite decay in weakly alkaline media occurs by two concurrent sets of pathways which are distinguished by their reaction products. One set leads to net isomerization to NO(3)(-) and the other set to net decomposition to O(2) plus NO(2)(-). At sufficiently high peroxynitrite concentrations, the decay half-time becomes concentration-independent and approaches a limiting value predicted by a mechanism in which reaction is initiated by unimolecular homolysis of the peroxo O-O bond, i.e., the following reaction: ONOOH --> (*)OH + (*)NO(2). This dynamical behavior excludes alternative postulated mechanisms that ascribe decomposition to bond rearrangement within bimolecular adducts. Nitrate and nitrite product distributions measured at very low peroxynitrite concentrations also correspond to predictions of the homolysis model, contrary to a recent report from another laboratory. Additionally, (1) the rate constant for the reaction ONOO(-) --> (*)NO + (*)O(2)(-), which is critical to the kinetic model, has been confirmed, (2) the apparent volume of activation for ONOOH decay (DeltaV() = 9.7 +/- 1.4 cm(3)/mol) has been shown to be independent of the concentration of added nitrite and identical to most other reported values, and (3) complex patterns of inhibition of O(2) formation by radical scavengers, which are impossible to rationalize by alternative proposed reaction schemes, are shown to be quantitatively in accord with the homolysis model. These observations resolve major disputes over experimental data existing in the literature; despite extensive investigation of these reactions, no verifiable experimental evidence has been advanced that contradicts the homolysis model.

PMID:
12924897
DOI:
10.1021/ic030104l
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center