Send to

Choose Destination
Angew Chem Int Ed Engl. 2003 Aug 18;42(32):3732-58.

Host-guest antenna materials.

Author information

Department of Chemistry and Biochemistry, University of Bern, 3000 Bern 9, Switzerland.


The focus of this review is on host-guest composites with photonic antenna properties. The material generally consists of cylindrical zeolite L crystals the channels of which are filled with dye molecules. The synthesis is based on the fact that molecules can diffuse into individual channels. This means that, under the appropriate conditions, they can also leave the zeolite by the same way. In some cases, however, it is desirable to block their way out by adding a closure molecule. Functionalization of the closure molecules allows tuning of, for example, wettability, refractive index, and chemical reactivity. The supramolecular organization of the dyes inside the channels is a first stage of organization. It allows light harvesting within a certain volume of a dye-loaded nanocrystalline zeolite and radiationless transport to both ends of the cylinder or from the ends to the center. The second stage of organization is the coupling to an external acceptor or donor stopcock fluorophore at the ends of the channels, which can trap or inject electronic excitation energy. The third stage of organization is the coupling to an external device through a stopcock molecule. The wide-ranging tunability of these highly organized materials offers fascinating new possibilities for exploring excitation-energy-transfer phenomena, and challenges for developing new photonic devices.


Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center