Format

Send to

Choose Destination
See comment in PubMed Commons below
Zhonghua Yi Xue Za Zhi. 2003 Jul 10;83(13):1169-72.

[Apoptosis of human lung cancer cells induced by activated peroxisome proliferator-activated receptor-gamma and its mechanism].

[Article in Chinese]

Author information

1
Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.

Abstract

OBJECTIVE:

To explore the effects of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) on the growth of human lung cancer cell lines and its possible mechanism.

METHODS:

Human non-small cell lung cancer (NSCLC) cells of the A549 line and human small cell lung cancer (SCLC) of the LTEP-P line were cultured and were divided into 3 groups respectively: control group, 15d-PGJ(2) group (15d-PGJ(2), a PPAR-gamma activator, was added), and ciglitazone group (ciglitazone, am antidiabetic drug, was added). Twenty-four, forty-eight, and seventy-two hours later, nested RT-PCR was used to detect t the expression of PPAR-gamma mRNA, Western blotting technique was used to detect the expression of PPAR-gamma protein, MTT staining was used to observe the proliferation of cells induced by PPAR-gamma agonists, TUNEL method was used to observe the apoptosis of cells affected by the ligands of PPAR-gamma, the expressions of bax, and bcl-2 mRN and proteins were examined by in situ hybridization and immunohistochemistry, and the expression of caspase-3 was detected by immunohistochemistry.

RESULTS:

PPAR-gamma was expressed in the two lung cancer cell lines. The cell proliferation was inhibited by 15d-PGJ(2) and ciglitazone, especially the former, in dose-dependent and time-dependent manners. The apoptosis rates were (1.9 +/- 0.5)%, (9.8 +/- 1.5)%, and (5.6 +/- 1.1)% respectively in the control, 15d-PGJ(2), and ciglitazone groups with a significant difference between ant 2 groups (all P < 0.05). The expression rate of bax were (9,2 +/- 1.5)%, (63 +/- 10)%, and (31 +/- 6)% respectively in the control, 15d-PGJ(2), and ciglitazone groups with a very significant difference between ant 2 groups (all P < 0.01). he expression rate of bcl-2 were (18 +/- 3)%, (36 +/- 9)%, and (33 +/- 7)% respectively in the control, 15d-PGJ(2), and ciglitazone groups with a very significant difference between the control group and any of the agonist-treated groups (all P < 0.01) and without significant difference between the two treated groups. The expression rates of caspase-3 were (6.5 +/- 1.0)%, (65 +/- 11)%, and (40 +/- 7)% respectively in the control, 15d-PGJ(2), and ciglitazone groups with a significant difference between any 2 group (all P < 0.01). The caspase-3 level was positively correlated with the level of apoptosis.

CONCLUSION:

Activated by ligands, PPAR-gamma remarkably inhibits the growth of human lung cancer cells through inducing apoptosis. Caspase-3 and bax/bcl-2 play a role in this process, PPAR-gamma is so important in the pathogenesis and/or progression of lung cancer that it may be a novel therapeutical target against lung cancer.

PMID:
12921638
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Chinese Medical Association Publishing House Ltd.
    Loading ...
    Support Center