Send to

Choose Destination
Toxicol Lett. 2003 Sep 15;144(1):77-91.

Diversity of selective environmental substrates for human cytochrome P450 2A6: alkoxyethers, nicotine, coumarin, N-nitrosodiethylamine, and N-nitrosobenzylmethylamine.

Author information

Laboratoire de Biochimie, Nutrition EA-948, Faculté de Médecine, I3S, BP-815, 29285 Brest, France.


Cytochrome P450 2A6 constitutes 5-10% of the total microsomal CYPs of human liver. Although CYP2A6 is the major coumarin 7-hydroxylase, other known substrates of CYP2A6 include many toxicants and precarcinogens. The chemical structure diversity of these substrates raises the question of their selectivity. Thus, kinetic parameters were determined for the hydroxylation of five substrates of diverse chemical structures known to be selective for cytochrome P450 2A6: methyl tert-butyl ether (MTBE), nicotine, coumarin, N-nitrosobenzylmethylamine (NBzMA), and N-nitrosodiethylamine (NDEA). Sources of enzymes were either human liver microsomes or heterologously expressed CYPs. Coumarin was shown to be the substrate with the highest affinity, followed by NDEA, nicotine, NBzMA, and MTBE. Variability of CYP2A6 catalytic activities in human liver was between 24-fold for MTBE to sevenfold for coumarin, while CYP2A6 content varied 68-fold in human liver microsomes. These five catalytic activities were highly significantly correlated between them and with hepatic CYP2A6 content. The most selective chemical inhibitor of these five substrates was shown to be 8-methoxypsoralen. Based upon chemical inhibition of the enzymatic activities of pure recombinant human CYPs, it cannot be totally excluded that P450s other than CYP2A6, especially CYP2E1, are involved, although to a lesser extent, in NDEA and NBzMA metabolism. In conclusion, the prototype probes for CYP2A6 phenotyping are coumarin and nicotine.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center