Format

Send to

Choose Destination
See comment in PubMed Commons below
EMBO J. 2003 Aug 15;22(16):4166-77.

Differential regulation of NFAT and SRF by the B cell receptor via a PLCgamma-Ca(2+)-dependent pathway.

Author information

1
Immunology Research Laboratories, Cell and Developmental Biology Graduate Program, The Pennsylvania State University, University Park, PA 16802, USA.

Abstract

NFAT and SRF are important in the regulation of proliferation and cytokine production in lymphocytes. NFAT activation by the B cell receptor (BCR) occurs via the PLCgamma-Ca(2+)-calcineurin pathway, however how the BCR activates SRF is unclear. We show here that like NFAT, BCR regulation of SRF occurs via an Src-Syk-Tec-PLCgamma-Ca(2+) (Lyn-Syk-Btk-PLCgamma-Ca(2+)) pathway. However, SRF responds to lower Ca(2+) and is less dependent on IP(3)R expression than NFAT. Ca(2+)-regulated calcineurin plays a partial role in SRF activation, in combination with diacylglycerol (DAG), while is fully required for NFAT activation. Signals from the DAG effectors protein kinase C, Ras and Rap1, and the downstream MEK-ERK pathway are required for both SRF and NFAT; however, NFAT but not SRF is dependent on JNK signals. Both SRF and NFAT were also dependent on Rac, Rho, CDC42 and actin. Finally, we show that Ca(2+) is not required for ERK activation, but instead for its association with nuclear areas of the cell. These data suggest that combinatorial assembly of signaling pathways emanating from the BCR differentially regulate NFAT and SRF, to activate gene expression.

PMID:
12912915
PMCID:
PMC175791
DOI:
10.1093/emboj/cdg401
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center