Send to

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 2003 Aug 22;331(4):925-40.

Stereospecific interactions of proline residues in protein structures and complexes.

Author information

Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Calcutta 700 054, India.


The constrained backbone torsion angle of a proline (Pro) residue has usually been invoked to explain its three-dimensional context in proteins. Here we show that specific interactions involving the pyrrolidine ring atoms also contribute to its location in a given secondary structure and its binding to another molecule. It is adept at participating in two rather non-conventional interactions, C-H...pi and C-H...O. The geometry of interaction between the pyrrolidine and aromatic rings, vis-à-vis the occurrence of the C-H...pi interactions has been elucidated. Some of the secondary structural elements stabilized by Pro-aromatic interactions are beta-turns, where a Pro can interact with an adjacent aromatic residue, and in antiparallel beta-sheet, where a Pro in an edge strand can interact with an aromatic residue in the adjacent strand at a non-hydrogen-bonded site. The C-H groups at the Calpha and Cdelta positions can form strong C-H...O interactions (as seen from the clustering of points) and such interactions involving a Pro residue at C' position relative to an alpha-helix can cap the hydrogen bond forming potentials of the free carbonyl groups at the helix C terminus. Functionally important Pro residues occurring at the binding site of a protein almost invariably engage aromatic residues (with one of them being held by C-H...pi interaction) from the partner molecule in the complex, and such aromatic residues are highly conserved during evolution.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center