Send to

Choose Destination
Microbiology. 2003 Aug;149(Pt 8):2093-106.

Yeast two-hybrid system survey of interactions between LEE-encoded proteins of enteropathogenic Escherichia coli.

Author information

Centre for Molecular Microbiology and Infection, Department of Biological Sciences, Flowers Building, Imperial College, London SW7 2AZ, UK.


Many Gram-negative pathogens employ a specific secretion pathway, termed type III secretion, to deliver virulence effector proteins directly to the membranes and cytosol of host eukaryotic cells. Subsequent functions of many effector proteins delivered in this manner result in subversion of host-signalling pathways to facilitate bacterial entry, survival and dissemination to neighbouring cells and tissues. Whereas the secreted components of type III secretion systems (TTSSs) from different pathogens are structurally and functionally diverse, the structural components and the secretion apparatus itself are largely conserved. TTSSs are large macromolecular assemblies built through interactions between protein components of hundreds of individual subunits. The goal of this project was to screen, using the standard yeast two-hybrid system, pair-wise interactions between components of the enteropathogenic Escherichia coli TTSS. To this end 37 of the 41 genes encoded by the LEE pathogenicity island were cloned into both yeast two-hybrid system vectors and all possible permutations of interacting protein pairs were screened for. This paper reports the identification of 22 novel interactions, including interactions between inner-membrane structural TTSS proteins; between the type III secreted translocator protein EspD and structural TTSS proteins; between established and putative chaperones and their cognate secreted proteins; and between proteins of undefined function.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Ingenta plc
Loading ...
Support Center