Format

Send to

Choose Destination
Eur J Nucl Med Mol Imaging. 2003 Oct;30(10):1407-12. Epub 2003 Jul 26.

[18F]FLT PET for diagnosis and staging of thoracic tumours.

Author information

1
Department of Nuclear Medicine, Eberhard-Karls-University Tübingen, Tübingen, Germany. helmut.dittmann@med.uni-tuebingen.de

Abstract

The nucleoside analogue 3'-deoxy-3'-[18F]fluorothymidine (FLT) has been introduced for imaging of tumour cell proliferation by positron emission tomography (PET). This study evaluated the use of FLT in patients with thoracic tumours prior to treatment. Whole-body FLT PET was performed in 16 patients with 18 tumours [17 thoracic tumours (nine non-small cell lung cancers, five oesophageal carcinomas, two sarcomas, one Hodgkin's lymphoma) and one renal carcinoma] before treatment. Fluorine-18 fluorodeoxyglucose (FDG) PET was performed for comparison except in those patients with oesophageal carcinoma. For semi-quantitative analysis, the average and maximum standardised uptake values (avgSUV and maxSUV, respectively) (FLT, 114+/-20 min p.i.; FDG, 87+/-8 min p.i.; 50% isocontour region of interest) was calculated. All 17 thoracic tumours and 19/20 metastases revealed significant FLT accumulation, resulting in easy delineation from surrounding tissue. The additional small grade 1 renal carcinoma was not detected with either FLT or FDG. In most lung tumours (avgSUV 1.5-8.2) and metastases, FLT showed intense uptake. However, one of two spinal bone metastases was missed owing to the high physiological FLT uptake in the surrounding bone marrow. Oesophageal carcinoma primaries (avgSUV 2.7-10.0) and occasional metastases showed particularly favourable tumour/non-tumour contrast. Compared with FDG, tumour uptake of FLT was lower (avgSUV, P=0.0006; maxSUV, P=0.0001), with a significant linear correlation (avgSUV, r2=0.45; maxSUV, r2=0.49) between FLT and FDG. It is concluded that FLT PET accurately visualises thoracic tumour lesions. In the liver and the bone marrow, high physiological FLT uptake hampers detection of metastases. On the other hand, FLT may be favourable for imaging of brain metastases owing to the low physiological uptake.

PMID:
12898201
DOI:
10.1007/s00259-003-1257-3
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center