Send to

Choose Destination
Evolution. 2003 Jun;57(6):1419-35.

Paternal, maternal, and biparental molecular markers provide unique windows onto the evolutionary history of macaque monkeys.

Author information

Department of Anthropology, Columbia University, New York, New York 10027, USA.


We report the results of one of the first intrageneric analyses to simultaneously survey mitochondrial, Y-chromosomal, and autosomal loci from the same individuals representing the same taxa. Phylogenetic trees were constructed for each of these genetic systems from a pool of 63 macaques, representing all 19 recognized species in this genus, and eight outgroup taxa. The mitochondrial locus analyzed here (1.5 Kb) spans the 3' end of 12S rDNA, tRNA-VAL, and the 5' end of 16S rDNA; the Y chromosome dataset (3.1 Kb) consists of the genes SRY and TSPY; the two autosomal datasets include IRBP intron 3 (1.6 Kb) and the 5' half of C4 "long" intron 9 (3.3 Kb). A total of 1.35 million bases were read, revealing 682 variable sites within the genus Macaca. With regard to earlier unresolved issues of macaque evolution, a comparison of topologies reconstructed from each of the three genetic systems suggests: (1) four monophyletic species groups; (2) an initial bifurcation among Asian macaques between the silenus group progenitor and a M. fascicularis-like taxon, with the latter representing the probable common ancestor to all non-silenus group Asian macaques; (3) a possible hybrid origin of M. arctoides from proto-M. assamensis/thibetana and proto-M. fascicularis; and (4) contemporary introgression between M. mulatta and M. fascicularis in Indochina. Inferences 3 and 4 are of particular interest, because episodes of reticulate evolution often go undetected in analyses employing a single genetic system. Finally, divergence calculations suggest that, in female-philopatric taxa, mitochondrial bifurcations may typically predate Y-chromosomal divergences at the same node.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center