Send to

Choose Destination
Prog Retin Eye Res. 2003 Sep;22(5):579-605.

The assessment of L- and M-cone specific electroretinographical signals in the normal and abnormal human retina.

Author information

Department of Experimental Ophthalmology, University of Tübingen Eye Hospital, Röntgenweg 11, D-72076 Tübingen, Germany.


Electroretinography (ERG) is a non-invasive method that can contribute to a description of the functional organization of the human retina under normal and pathological circumstances. The physiological and pathophysiological processes leading to an ERG signal can be better understood when the cellular origins of the ERG are identified. The ERG signal recorded at the cornea is initiated by light absorption in the photoreceptors which leads to activity in the photoreceptors and in their post-receptoral pathways. Light absorption in distinct photoreceptor types may lead to different ERG responses caused either by differences between the photoreceptors or between their post-receptoral pathways. The description of contributions of the different photoreceptor types to the ERG may therefore give more detailed insight in the origins of the ERG. Such a description can be obtained by isolating the responses of a single photoreceptor type. Nowadays, careful control of differently colored light sources together with the relatively well-known cone and rod fundamentals enables a precise description and control of photoreceptor excitation. Theoretically, any desired combination of photoreceptor excitation modulation can be achieved, including conditions in which the activity in only one photoreceptor type is modulated (silent substitution). In this manner the response of one photoreceptor type is isolated without changing the state of adaptation. This stimulus technique has been used to study the contribution of signals originating in the different photoreceptor types to the human ERG. Furthermore, by stimulating two or more photoreceptor types simultaneously, the interaction between the different signals can be studied. With these new techniques results of measurements in healthy subjects and patients with retinal diseases can be compared. This approach should ultimately help to develop better diagnostic tools and result in a fuller description of the changes and the pathophysiological mechanisms in retinal disorder. Finally, data obtained with cone and rod specific stimuli may lead to a reinterpretation of the standard ERG used in a clinical setting.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center