Format

Send to

Choose Destination
J Neurochem. 2003 Aug;86(4):980-91.

A complex signaling cascade links the serotonin2A receptor to phospholipase A2 activation: the involvement of MAP kinases.

Author information

1
Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmacal Sciences, Purdue University, West Lafayette, Indiana, USA.

Abstract

Previous studies in our laboratory have shown that in NIH3T3-5HT2A cells, 5-HT-induced AA release is PLA2-coupled and independent of 5-HT2A receptor-mediated PLC activation. Although 5-HT2A receptor-mediated PLC activation is known to be Galphaq-coupled, much less is understood about 5-HT2A receptor-mediated PLA2 activation. Therefore, the studies presented here were aimed at elucidating the signal transduction pathway linking stimulation of the 5-HT2A receptor to PLA2 activation. By employing various selective inhibitors, toxins, and antagonistic peptide constructs, we propose that the 5-HT2A receptor can couple to PLA2 activation through two parallel signaling cascades. Initial experiments were designed to examine the role of pertussis toxin-sensitive G proteins, namely Galphai/o, as well as pertussis toxin-insensitive G proteins, namely Galpha12/13, in 5-HT-induced AA release. Furthermore, inactivation of both Gbetagamma heterodimers and Rho proteins resulted in decreased agonist-induced AA release, without having any effect on PLC-IP accumulation. We also demonstrated 5-HT2A receptor-mediated phosphorylation of ERK1,2 and p38. Moreover, pretreatment with selective ERK1,2 and p38 inhibitors resulted in decreased 5-HT-induced AA release. Taken together, these results suggest that the 5-HT2A receptor expressed in NIH3T3 cells can couple to PLA2 activation though a complex signaling mechanism involving both Galphai/o-associated Gbetagamma-mediated ERK1,2 activation and Galpha12/13-coupled, Rho-mediated p38 activation.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center