Format

Send to

Choose Destination
See comment in PubMed Commons below
Hypertens Res. 2003 May;26(5):421-6.

Differential induction of protein kinase C isoforms at the cardiac hypertrophy stage and congestive heart failure stage in Dahl salt-sensitive rats.

Author information

1
Department of Medicine II, Yokohama City University School of Medicine, Yokohama, Japan.

Abstract

Several protein kinase C (PKC) isoforms may play important roles in cellular signaling pathways. Recent reports have suggested that PKC plays critical isoform-specific roles in the development of cardiac hypertrophy and heart failure. The purpose of the present study was to examine the expression profiles of PKC isoforms in models of cardiac hypertrophy and heart failure. We examined the cardiac expression of individual PKC isoforms at the cardiac hypertrophy stage and the heart failure stage in Dahl salt-sensitive rats by Western blot analysis. The levels of all PKC isoforms increased at the cardiac hypertrophy stage and the heart failure stage, but the pattern of increase differed among PKC isoforms at the heart failure stage. The expressions of PKCalpha, beta, and delta increased at the cardiac hypertrophy stage and remained elevated at the heart failure stage. On the other hand, the expression of PKCepsilon and atypical PKCs (aPKCs) increased at the cardiac hypertrophy stage, but this increase tended to decline at the congestive heart failure stage. These results suggest that there are two groups of PKC isoforms. Several reports have shown that PKCalpha, beta, and delta are involved in the development of cardiac hypertrophy and heart failure, and that PKCepsilon plays a role in the physiological hypertrophic responses and cardioprotective actions. These facts suggest that all PKC isoforms (PKCalpha, beta, delta, epsilon, and aPKCs) expressed in the heart may have similar functions at the cardiac hypertrophy stage, but that two groups of PKC isoforms (PKCalpha, beta, delta, and PKCepsilon, aPKCs) have different functions at the congestive heart failure stage.

PMID:
12887134
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
    Loading ...
    Support Center