Format

Send to

Choose Destination
See comment in PubMed Commons below
J Physiol. 2003 Jul 1;550(Pt 1):83-101.

The plasma membrane calcium-ATPase as a major mechanism for intracellular calcium regulation in neurones from the rat superior cervical ganglion.

Author information

1
Department of Pharmacology, University College London, UK. n.wanaverbecq@ion.ucl.ac.uk

Abstract

Patch-clamp recording combined with indo-l measurement of free intracellular calcium concentration ([Ca2+]i) was used to determine the homeostatic systems involved in the maintenance of resting [Ca2+]I and in the clearance of Ca2+ transients following activation of voltage-gated Ca2+ channels in neurones cultured from rat superior cervical ganglion (SCG). The Ca2+ binding ratio was estimated to be approximately 500 at 100 nM, decreasing to approximately 250 at [Ca2+]i approximately 1 pM, and to involve at least two buffering systems with different affinities for Ca2+. Removal of extracellular Ca2+ led to a decrease in[Ca2+]i that was mimicked by the addition of La3+, and was more pronounced after inhibition of the endoplasmic reticulum Ca2+ uptake system (SERCA). Inhibition of the plasma membrane Ca2+ pump (PMCA) by extracellular allkalinisation (pH 9) or intracellular carboxyeosin both increased resting [Ca2+]i and prolonged the recovery of Ca2+ transients at peak [Ca2+]i C 500 nM. For [Ca2+]i loads >500 nM, recovery showed an additional plateau phase that was abolished i nm-chlorophenylhydrazone (CCCP) or on omitting intracellular Na+. Inhibition of the plasma membrane Na+ -Ca2+ exchanger (NCX) and of SERCA had a small but significant additional effect on the rate of decay of these larger Ca2+ transients. In conclusion, resting [Ca2+]i is maintained by passive Ca2+ influx and regulated by a large Ca2+ buffering system, Ca2+ extrusion via a PMCA and Ca2+ transport from the intracellular stores. PMCA is also the principal Ca2+ extrusion system at low Ca2+ loads, with additional participation of the NCX and intracellular organelles at high [Ca2+]i.

PMID:
12879862
PMCID:
PMC2343008
DOI:
10.1113/jphysiol.2002.035782
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center