Format

Send to

Choose Destination
See comment in PubMed Commons below
Nature. 2003 Jul 24;424(6947):448-52.

The molecular nature of the zebrafish tail organizer.

Author information

1
Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, CNRS/INSERM/ULP, 1 rue Laurent Fries, BP10142, CU de Strasbourg, 67404 Illkirch Cedex, France.

Abstract

Based on grafting experiments, Mangold and Spemann showed the dorsal blastopore lip of an amphibian gastrula to be able to induce a secondary body axis. The equivalent of this organizer region has been identified in different vertebrates including teleosts. However, whereas the graft can induce ectopic head and trunk, endogenous and ectopic axes fuse in the posterior part of the body, raising the question of whether a distinct organizer region is necessary for tail development. Here we reveal, by isochronic and heterochronic transplantation, the existence of a tail organizer deriving from the ventral margin of the zebrafish embryo, which is independent of the dorsal Spemann organizer. Loss-of-function experiments reveal that bone morphogenetic protein (BMP), Nodal and Wnt8 signalling pathways are required for tail development. Moreover, stimulation of naive cells by a combination of BMP, Nodal and Wnt8 mimics the tail-organizing activity of the ventral margin and induces surrounding tissues to become tail. In contrast to induction of the vertebrate head, known to result from the triple inhibition of BMP, Nodal and Wnt, here we show that induction of the tail results from the triple stimulation of BMP, Nodal and Wnt8 signalling pathways.

PMID:
12879074
DOI:
10.1038/nature01822
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center