Send to

Choose Destination
J Immunol. 2003 Aug 1;171(3):1172-82.

Constitutive caspase activation and impaired death-inducing signaling complex formation in CD95-resistant, long-term activated, antigen-specific T cells.

Author information

University Children's Hospital and Institute of Pathology, University of Ulm, Ulm, Germany.


Elimination of T cells during an immune response is mediated by activation-induced cell death (AICD) and CD95-mediated apoptosis. Chronic graft-vs-host disease and T cell-mediated autoimmune diseases are caused by the persistence of activated T cells that escaped tolerance induction by deletion or silencing. To mimic the in vivo situation of long-term activated T cells, we generated an in vitro system using HLA-A1-specific T cells, weekly restimulated by Ag. While short-term activated T cells (two to five rounds of stimulation) were CD95 sensitive and susceptible to AICD, T cells stimulated more than eight times acquired constitutive CD95 resistance and exhibited reduced AICD. Phenotypically, these long-term activated T cells could be identified as effector/memory T cells. The expression of the proforms of the CD95 receptor initiator caspases, caspase-8 and -10, and the effector caspase-3 was strongly decreased in these cells, and only active caspase fragments were detected. In contrast to short-term activated T cells, constitutive CD95 receptor clustering was observed on the cell surface, and caspase-8 was bound to the CD95 receptor in the absence of receptor triggering. After further cross-linking of CD95, additional formation of the death-inducing signaling complex (DISC) was strongly impaired. Reduced DISC formation in long-term activated T cells was associated with the loss of PTEN expression and the increased phosphorylation of protein kinase B. Inhibitors of phosphoinositol 3-kinase restored CD95 sensitivity and DISC formation in long-term activated T cells. These data suggest that defective CD95 signaling in effector/memory T cells may contribute to the apoptosis resistance toward physiological stimuli in T cells mediating tissue destruction in vivo.

[Indexed for MEDLINE]
Free full text

Publication type, MeSH terms, Substances

Publication type

MeSH terms


Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center