Format

Send to

Choose Destination
J Biol Chem. 2003 Oct 10;278(41):40041-9. Epub 2003 Jul 18.

Cellular heparan sulfate participates in the metabolism of prions.

Author information

1
Department of Oncology, Hadassah-University Hospital, Jerusalem 91120, Israel.

Abstract

During prion diseases, the host protein PrPC is refolded into an abnormal conformer "prion" PrPSc. Histological and pharmacological data have suggested that glycosaminoglycans may be involved in the development of prion diseases. Here we present the first direct evidence that cellular glycosaminoglycans play a role in the biogenesis of PrPSc in prion-infected ScN2a cells. When ScN2a cells were incubated with estradiol beta-d-xyloside to inhibit the glycosylation of proteoglycans, PrPSc was vastly reduced. Treating ScN2a-M cells with heparinase III, but not with heparinase I or chondroitinase ABC, caused a profound reduction of PrPSc. In contrast, neither the amount of PrPC nor its subcellular distribution were affected as assayed by immunofluorescence microscopy and flotation procedures. In vitro treatment of ScN2a membranes with heparinase III at either neutral or acidic pH did not reduce the level of protease-resistant PrPSc. The inhibitor of sulfation, sodium chlorate, vastly reduces PrPSc in ScN2a cells (Gabizon, R., Meiner, Z., Halimi, M., and Ben-Sasson, S. A. (1993) J. Cell. Physiol. 157, 319-325). Both soluble heparan sulfate and chondroitin sulfate partially restored the level of PrPSc in chlorate-treated cells. We conclude that heparinase III-sensitive, presumably undersulfated, cellular heparan sulfate plays a significant role in the biogenesis of PrPSc in ScN2a cells.

PMID:
12871949
DOI:
10.1074/jbc.M301152200
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center