Format

Send to

Choose Destination
Chem Res Toxicol. 2003 Jul;16(7):873-80.

Interaction of trivalent arsenicals with metallothionein.

Author information

1
Department of Public Health Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3 Canada.

Abstract

Arsenic is a human carcinogen, causing skin, bladder, and lung cancers. Although arsenic in drinking water affects millions of people worldwide, the mechanism(s) of action by which arsenic causes cancers is not known. Arsenic probably exerts some toxic effects by binding with proteins. However, few experimental data are available on arsenic-containing proteins in biological systems. This study reports on arsenic interaction with metallothionein and established binding stoichiometries between metallothionein and the recently discovered trivalent metabolites of arsenic metabolism. Size exclusion chromatography with inductively coupled plasma mass spectrometry analysis of reaction mixtures between trivalent arsenicals and metallothionein clearly demonstrated the formation of complexes of arsenic with metallothionein. Analysis of the complexes using electrospray quadrupole time-of-flight tandem mass spectrometry revealed the detailed binding stoichiometry between arsenic and the 20 Cys residues in the metallothionein molecule. Inorganic arsenite (As(III)) and its two trivalent methylation metabolites, monomethylarsonous acid (MMA(III)) and dimethylarsinous acid (DMA(III)), readily bind with metallothionein. Each metallothionein molecule could bind with up to six As(III), 10 MMA(III), and 20 DMA(III) molecules, consistent with the coordination chemistry of these arsenicals. The findings on arsenic interaction with proteins are useful for a better understanding of arsenic health effects.

PMID:
12870890
DOI:
10.1021/tx034053g
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center