Send to

Choose Destination
Clin Exp Immunol. 2003 Aug;133(2):182-92.

Immune biology of macaque lymphocyte populations during mycobacterial infection.

Author information

Tuberculosis Research Unit, Beth Israel Deaconess, Medical Center, Harvard Medical School, Boston, MA, USA.


Immune responses of lymphocyte populations during early phases of mycobacterial infection and reinfection have not been well characterized in humans. A non-human primate model of Mycobacterium bovis bacille Calmette-Guerin (BCG) infection was employed to characterize optimally the immune responses of mycobacteria-specific T cells. Primary BCG infection induced biphasic immune responses, characterized by initial lymphocytopenia and subsequent expansion of CD4+, CD8+ and gammadelta T cell populations in the blood, lymph nodes and the pulmonary compartment. The potency of detectable T cell immune responses appears to be influenced by the timing and route of infection as well as challenge doses of BCG organisms. Systemic BCG infection introduced by intravenous challenge induced a dose-dependent expansion of circulating CD4+, CD8+ and gammadelta T cells whereas, in the pulmonary compartment, the systemic infection resulted in a predominant increase in numbers of gammadelta T cells. In contrast, pulmonary exposure to BCG through the bronchial route induced detectable expansions of CD4+, CD8+ and gammadelta T cell populations in only the lung but not in the blood. A rapid recall expansion of these T cell populations was seen in the macaques reinfected intravenously and bronchially with BCG. The expanded alphabeta and gammadelta T cell populations exhibited their antigen specificity for mycobacterial peptides and non-peptide phospholigands, respectively. Finally, the major expansion of T cells was associated with a resolution of active BCG infection and reinfection. The patterns and kinetics of CD4+, CD8+ and gammadelta T cell immune responses during BCG infection might contribute to characterizing immune protection against tuberculosis and testing new tuberculosis vaccines in primates.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center