Format

Send to

Choose Destination
Clin Breast Cancer. 2003 Jun;4(2):126-37.

Mammalian target of rapamycin: a new molecular target for breast cancer.

Author information

1
Institute for Drug Development, Cancer Therapy and Research Center, San Antonio, TX, USA. mmita@idd.org

Abstract

The mammalian target of rapamycin (mTOR), a downstream effector of the phosphatidylinositol 3-kinase (PI3K)/Akt (protein kinase B) signaling pathway that mediates cell survival and proliferation, is a prime strategic target for anticancer therapeutic development. By targeting mTOR, the immunosuppressant and antiproliferative agent rapamycin inhibits signals required for cell cycle progression, cell growth, and proliferation. Both rapamycin and novel rapamycin analogues with more favorable pharmaceutical properties, such as CCI-779, RAD 001, and AP23573, are highly specific inhibitors of mTOR. In essence, these agents gain function by binding to the immunophilin FK506 binding protein 12 and the resultant complex inhibits the activity of mTOR. Because mTOR activates both the 40S ribosomal protein S6 kinase (p70s6k) and the eukaryotic initiation factor 4E-binding protein-1, rapamycin-like compounds block the actions of these downstream signaling elements, which results in cell cycle arrest in the G1 phase. Rapamycin and its analogues also prevent cyclin-dependent kinase (CDK) activation, inhibit retinoblastoma protein phosphorylation, and accelerate the turnover of cyclin D1, leading to a deficiency of active CDK4/cyclin D1 complexes, all of which potentially contribute to the prominent inhibitory effects of rapamycin at the G1/S boundary of the cell cycle. Rapamycin and rapamycin analogues have demonstrated impressive growth-inhibitory effects against a broad range of human cancers, including breast cancer, in preclinical and early clinical evaluations. In breast cancer cells, PI3K/Akt and mTOR pathways seem to be critical for the proliferative responses mediated by the epidermal growth factor receptor, the insulin growth factor receptor, and the estrogen receptor. Furthermore, these pathways may be constitutively activated in cancers with many types of aberrations, including those with loss of PTEN suppressor gene function. Therefore, the development of inhibitors of mTOR and related pathways is a rational therapeutic strategy for breast and other malignancies that possess a wide range of aberrant molecular constituents. This review will summarize the principal mechanisms of action of rapamycin and rapamycin derivatives, as well as the potential utility of these agents as anticancer therapeutic agents with an emphasis on breast cancer. The preliminary results of early clinical evaluations with rapamycin analogues and the unique developmental challenges that lie ahead will also be discussed.

PMID:
12864941
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center