Format

Send to

Choose Destination
Plant Physiol. 2003 Jul;132(3):1586-99.

Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce.

Author information

1
Biotechnology Laboratory, University of British Columbia, 6174 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z3.

Abstract

Terpenoids are characteristic constitutive and inducible defense chemicals of conifers. The biochemical regulation of terpene formation, accumulation, and release from conifer needles was studied in Norway spruce [Picea abies L. (Karst)] saplings using methyl jasmonate (MeJA) to induce defensive responses without inflicting physical damage to terpene storage structures. MeJA treatment caused a 2-fold increase in monoterpene and sesquiterpene accumulation in needles without changes in terpene composition, much less than the 10- and 40-fold increases in monoterpenes and diterpenes, respectively, observed in wood tissue after MeJA treatment (D. Martin, D. Tholl, J. Gershenzon, J. Bohlmann [2002] Plant Physiol 129: 1003-1018). At the same time, MeJA triggered a 5-fold increase in total terpene emission from foliage, with a shift in composition to a blend dominated by oxygenated monoterpenes (e.g. linalool) and sesquiterpenes [e.g. (E)-beta-farnesene] that also included methyl salicylate. The rate of linalool emission increased more than 100-fold and that of sesquiterpenes increased more than 30-fold. Emission of these compounds followed a pronounced diurnal rhythm with the maximum amount released during the light period. The major MeJA-induced volatile terpenes appear to be synthesized de novo after treatment, rather than being released from stored terpene pools, because they are almost completely absent from needle oleoresin and are the major products of terpene synthase activity measured after MeJA treatment. Based on precedents in other species, the induced emission of terpenes from Norway spruce foliage may have ecological and physiological significance.

PMID:
12857838
PMCID:
PMC167096
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center