Send to

Choose Destination
Plant Physiol. 2003 Jul;132(3):1186-95.

Calmodulin is involved in heat shock signal transduction in wheat.

Author information

Institute of Molecular Cell Biology, Hebei Normal University, Shijiazhuang 050016, People's Republic of China.


The involvement of calcium and calcium-activated calmodulin (Ca(2+)-CaM) in heat shock (HS) signal transduction in wheat (Triticum aestivum) was investigated. Using Fluo-3/acetoxymethyl esters and laser scanning confocal microscopy, it was found that the increase of intracellular free calcium ion concentration started within 1 min after a 37 degrees C HS. The levels of CaM mRNA and protein increased during HS at 37 degrees C in the presence of Ca(2+). The expression of hsp26 and hsp70 genes was up-regulated by the addition of CaCl(2) and down-regulated by the calcium ion chelator EGTA, the calcium ion channel blockers LaCl(3) and verapamil, or the CaM antagonists N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide and chlorpromazine. Treatment with Ca(2+) also increased, and with EGTA, verapamil, chlorpromazine, or trifluoperazine decreased, synthesis of HS proteins. The temporal expression of the CaM1-2 gene and the hsp26 and hsp70 genes demonstrated that up-regulation of the CaM1-2 gene occurred at 10 min after HS at 37 degrees C, whereas that of hsp26 and hsp70 appeared at 20 min after HS. A 5-min HS induced expression of hsp26 after a period of recovery at 22 degrees C after HS at 37 degrees C. Taken together, these results indicate that Ca(2+)-CaM is directly involved in the HS signal transduction pathway. A working hypothesis about the relationship between upstream and downstream of HS signal transduction is presented.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center