Send to

Choose Destination
Br J Cancer. 2003 Jul 7;89(1):185-91.

Roles of the PI-3K and MEK pathways in Ras-mediated chemoresistance in breast cancer cells.

Author information

1Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.


Activated Ras utilises several downstream pathways, including the mitogen-activated protein kinase (MAPK) kinase (MEK)/MAPK pathway and the phosphoinositide 3-kinase (PI-3k)/Akt pathway, to promote cell proliferation and to inhibit apoptosis. To investigate which pathway plays a major role in Ras-induced drug resistance to chemotherapeutic agents in breast cancer cells, we transfected MCF7 breast cancer cells with a constitutively active H-RasG12V and examined the toxicities of three commonly used breast cancer chemotherapeutic agents, paclitaxel, doxorubicin, and 5-fluorouracil in these cells under the conditions that PI-3K or MEK were selectively inhibited by their respective specific inhibitors or dominant negative expression vectors. We found that Ras-mediated drug resistance is well correlated with resistance to apoptosis induced by anticancer agents in MCF7 breast cancer cells. Although inhibition of MEK/MAPK or PI-3K/Akt can each enhance the cytotoxicity of paclitaxel, doxorubicin, or 5-fluorouracil, inhibition of the PI-3K/Akt pathway seems to have a greater effect than inhibition of the MEK/MAPK pathway in reversing Ras-mediated drug resistance. Our results indicate that the PI-3K pathway may play a more important role in receptor tyrosine kinase-mediated resistance to chemotherapy and suggest that PI-3K/Akt might be a critical target molecule for anticancer intervention in breast cancer.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center