Send to

Choose Destination
Hum Mol Genet. 2003 Jul 15;12(14):1671-87.

ALS2, a novel guanine nucleotide exchange factor for the small GTPase Rab5, is implicated in endosomal dynamics.

Author information

Solution Oriented Research for Science and Technology (SORST), Japan Science and Technology Corporation (JST), Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan.


ALS2 mutations account for a number of recessive motor neuron diseases including forms of amyotrophic lateral sclerosis, primary lateral sclerosis and hereditary spastic paraplegia. Although computational predictions suggest that ALS2 encodes a protein containing multiple guanine nucleotide exchange factor (GEF) domains [RCC1-like domain (RLD), the Dbl homology and pleckstrin homology (DH/PH), and the vacuolar protein sorting 9 (VPS9)], the functions of the ALS2 protein have not been revealed as yet. Here we show that the ALS2 protein specifically binds to small GTPase Rab5 and functions as a GEF for Rab5. Ectopically expressed ALS2 protein localizes with Rab5 and early endosome antigen-1 (EEA1) onto early endosomal compartments and stimulates the enlargement of endosomes in cultured cortical neurons. The carboxy-terminus of ALS2 protein carrying a VPS9 domain mediates not only the activation of Rab5 via a guanine-nucleotide exchanging reaction but also the endosomal localization of the ALS2 protein, while the amino-terminal half containing RLD acts suppressive in its membranous localization. Further, the DH/PH domain in the middle portion of ALS2 protein enhances the VPS9 domain-mediated endosome fusions. Taken together, the ALS2 protein as a novel Rab5-GEF, ALS2rab5GEF seems to be implicated in the endosomal dynamics in vivo. Notably, a feature common to eight reported ALS2 mutations among motor neuron diseases is the loss of VPS9 domain, resulting in the failure of Rab5 activation. Thus, a perturbation of endosomal dynamics caused by loss of ALS2 rab5GEF activity might underlie neuronal dysfunction and degeneration in a number of motor neuron diseases.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center