Format

Send to

Choose Destination
Exp Cell Res. 2003 Jul 15;287(2):219-27.

Cofilin phosphorylation and actin polymerization by NRK/NESK, a member of the germinal center kinase family.

Author information

1
Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.

Abstract

Nck-interacting kinase (NIK)-related kinase (NRK)/NIK-like embryo-specific kinase (NESK) is a protein kinase that belongs to the germinal center kinase family, and activates the c-Jun N-terminal kinase (JNK) signaling pathway. In this study, we examined the effect of NRK/NESK on actin cytoskeletal organization. Overexpression of NRK/NESK in COS7 cells induced accumulation of polymerized actin at the perinuclear. Phosphorylation of cofilin, an actin-depolymerizing factor, was increased in NRK/NESK-expressing HEK 293T cells. In addition, in vitro phosphorylation of cofilin was observed on NRK/NESK immunoprecipitates from HEK 293T cells expressing the kinase domain of NRK/NESK. The cofilin phosphorylation occurred at the serine residue of position 3 (Ser-3). Since the phosphorylation at Ser-3 inactivates the actin-depolymerizing activity of cofilin, these results suggest that NRK/NESK induces actin polymerization through cofilin phosphorylation. The cofilin phosphorylation did not appear to be mediated through activation of LIM-kinasel, a cofilin-phosphorylating kinase, or through the activation of JNK. Thus, cofilin is likely to be a direct substrate of NRK/NESK. NRK/NESK is predominantly expressed in skeletal muscle during the late stages of mouse embryogenesis. Thus, NRK/NESK may be involved in the regulation of actin cytoskeletal organization in skeletal muscle cells through cofilin phosphorylation.

PMID:
12837278
DOI:
10.1016/s0014-4827(03)00136-8
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center