Send to

Choose Destination
See comment in PubMed Commons below
J Neuroendocrinol. 2003 Aug;15(8):725-31.

Circulating angiotensin II activates neurones in circumventricular organs of the lamina terminalis that project to the bed nucleus of the stria terminalis.

Author information

Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Melbourne, Victoria, Australia.


The aim of this study was to determine, in conscious rats, whether elevated concentrations of circulating angiotensin II activate neurones in both the subfornical organ and organum vasculosum of the lamina terminalis (OVLT) that project to the bed nucleus of the stria terminalis (BNST). The strategy employed was to colocalize retrogradely transported cholera toxin B subunit (CTB) from the BNST, with elevated levels of Fos protein in response to angiotensin II. Circulating angiotensin II concentrations were increased by either intravenous infusion of angiotensin II or subcutaneous injection of isoproterenol. Neurones exhibiting Fos in response to angiotensin II were present in the subfornical organ, predominantly in its central core but with some also seen in its peripheral aspect, the dorsal and lateral margins of the OVLT, the supraoptic nucleus and the parvo- and magnocellular divisions of the paraventricular nucleus. Fos-labelling was not apparent in control rats infused with isotonic saline intravenously or injected with either CTB or CTB conjugated to gold particles (CTB-gold) only. Of the neurones in the subfornical organ that were shown by retrograde labelling to project to BNST, approximately 50% expressed Fos in response to isoproterenol. This stimulus also increased Fos in 33% of neurones in the OVLT that project to BNST. Double-labelled neurones were concentrated in the central core of the subfornical organ and lateral margins of the OVLT in response to increased circulating angiotensin II resulting from isoproterenol treatment. These data support a role for circulating angiotensin II acting either directly or indirectly on neurones in subfornical organ and OVLT that project to the BNST and provide further evidence of functional regionalization within the subfornical organ and the OVLT. The function of these pathways is yet to be determined; however, a role in body fluid homeostasis is possible.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center