Send to

Choose Destination
Stem Cells. 2003;21(4):417-27.

Use of matrix metalloproteinase (MMP)-9 knockout mice demonstrates that MMP-9 activity is not absolutely required for G-CSF or Flt-3 ligand-induced hematopoietic progenitor cell mobilization or engraftment.

Author information

Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha 68198, USA.


Recombinant growth factors (GFs) are used to mobilize hematopoietic stem cells (HSCs) for autologous and allogeneic transplantation; however, little is known about the mechanism(s) critical to this process. Increased levels of serum matrix metalloproteinase (MMP)-9 are detected during mobilization by G-CSF in humans or interleukin (IL)-8 in primates and mice, suggesting a role for this molecule in mobilization. Further, antibodies to MMP-9 block IL-8-induced mobilization. To investigate the role of MMP-9, we compared G-CSF and Flt-3 ligand (Flt-3L)-induced mobilization in wild-type (WT) and MMP-9 knockout (KO) mice. The absence of MMP-9 in the KO mice was confirmed by zymography, which also revealed that serum MMP-9 levels were elevated in WT mice following G-CSF administration. We report that MMP-9 KO mice did not have impaired G-CSF- or Flt-3L-induced hematopoietic progenitor mobilization, suggesting that MMP-9 is not an absolute requirement for this process. In addition, MMPs produced by HSCs have been demonstrated to be important for their transmigration; however, we demonstrate that the engraftment of MMP-9-deficient bone marrow HSCs was not impaired in sublethally irradiated WT recipients. We conclude that while MMP-9 may play an important role in GF-induced hematopoietic progenitor mobilization and engraftment in WT animals, compensatory upregulation of enzymes with a similar activity profile to MMP-9 may obscure the impact of MMP-9 deficiency in the KO model.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center