Format

Send to

Choose Destination
See comment in PubMed Commons below
FASEB J. 2003 Jul;17(10):1238-47.

A reticular rhapsody: phylogenic evolution and nomenclature of the RTN/Nogo gene family.

Author information

  • 1Brain Research Institute, University of Zurich, and Department of Biology, ETH Zurich, 8057 Zurich, Switzerland. oertle@hifo.unizh.ch

Abstract

Reticulon (RTN) genes code for a family of proteins relatively recently described in higher vertebrates. The four known mammalian paralogues (RTN1, -2, -3, and -4/Nogo) have homologous carboxyl termini with two characteristic large hydrophobic regions. Except for RTN4-A/Nogo-A, thought to be an inhibitor for neurite outgrowth, restricting the regenerative capabilities of the mammalian CNS after injury, the functions of other family members are largely unknown. The overall occurrence of RTNs in different phyla and the evolution of the RTN gene family have hitherto not been analyzed. Here we expound data showing that the RTN family has arisen during early eukaryotic evolution potentially concerted to the establishment of the endomembrane system. Over 250 reticulon-like (RTNL) genes were identified in deeply diverging eukaryotes, fungi, plants, and animals. A systematic nomenclature for all identified family members is introduced. The analysis of exon-intron arrangements and of protein homologies allowed us to isolate key steps in the history of these genes. Our data corroborate the hypothesis that present RTNs evolved from an intron-rich reticulon ancestor mainly by the loss of different introns in diverse phyla. We also present evidence that the exceptionally large RTN4-A-specific exon 3, which harbors a potent neurite growth inhibitory region, may have arisen de novo approximately 350 MYA during transition to land vertebrates. These data emphasize on the one hand the universal role of reticulons in the eukaryotic system and on the other hand the acquisition of putative new functions through acquirement of novel amino-terminal exons.

PMID:
12832288
DOI:
10.1096/fj.02-1166hyp
[PubMed - indexed for MEDLINE]
Free full text

Publication Types, MeSH Terms, Substances, Secondary Source ID

Publication Types

MeSH Terms

Substances

Secondary Source ID

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center