Send to

Choose Destination
Insect Biochem Mol Biol. 2003 Jul;33(7):717-32.

Exploring the salivary gland transcriptome and proteome of the Anopheles stephensi mosquito.

Author information

National Institute of Allergy and Infectious Diseases, Medical Entomology Section, Laboratory of Parasitic Diseases, Building 4, MSC 0425, National Institutes of Health, Bethesda, MD 20892-0425, USA.


Anopheles stephensi is the main urban mosquito vector of malaria in the Indian subcontinent, and belongs to the same subgenus as Anopheles gambiae, the main malaria vector in Africa. Recently the genome and proteome sets of An. gambiae have been described, as well as several protein sequences expressed in its salivary glands, some of which had their expression confirmed by amino terminal sequencing. In this paper, we randomly sequenced a full-length cDNA library of An. stephensi and performed Edman degradation of polyvinylidene difluoride (PVDF)-transferred protein bands from salivary homogenates. Twelve of 13 proteins found by aminoterminal degradation were found among the cDNA clusters of the library. Thirty-three full-length novel cDNA sequences are reported, including a novel secreted galectin; the homologue of anophelin, a thrombin inhibitor; a novel trypsin/chymotrypsin inhibitor; an apyrase; a lipase; and several new members of the D7 protein family. Most of the novel proteins have no known function. Comparison of the putatively secreted and putatively housekeeping proteins of An. stephensi with An. gambiae proteins indicated that the salivary gland proteins are at a faster evolutionary pace. The possible role of these proteins in blood and sugar feeding by the mosquito is discussed. The electronic tables and supplemental material are available at .

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center