Format

Send to

Choose Destination
See comment in PubMed Commons below
J Agric Food Chem. 2003 Jul 2;51(14):3999-4003.

Gas chromatographic investigation of acrylamide formation in browning model systems.

Author information

1
National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.

Abstract

Acrylamide formed in browning model systems was analyzed using a gas chromatograph with a nitrogen-phosphorus detector. Asparagine alone produced acrylamide via thermal degradation at the level of 0.99 microgram/g of asparagine. When asparagine was heated with triolein-which produced acrolein at the level of 1.82 +/- 0.31 (n = 5) mg/L of headspace by heat treatment-acrylamide was formed at the level of 88.6 microgram/g of asparagine. When acrolein gas was sprayed onto asparagine heated at 180 degrees C, a significant amount of acrylamide was formed (114 microgram/g of asparagine). On the other hand, when acrolein gas was sprayed onto glutamine under the same conditions, only a trace amount of acrylamide was formed (0.18 microgram/g of glutamine). Relatively high levels of acrylamide (753 microgram/g of ammonia) were formed from ammonia and acrolein heated at 180 degrees C in the vapor phase. The reaction of acrylic acid, which is an oxidation product of acrolein and ammonia, produced a high level of acrylamide (190 000 microgram/g of ammonia), suggesting that ammonia and acrolein play an important role in acrylamide formation in lipid-rich foods. Acrylamide can be formed from asparagine alone via thermal degradation, but carbonyl compounds, such as acrolein, promote its formation via a browning reaction.

PMID:
12822936
DOI:
10.1021/jf0300947
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center