Format

Send to

Choose Destination
See comment in PubMed Commons below
Reproduction. 2003 Jul;126(1):1-11.

New frontiers in gene targeting and cloning: success, application and challenges in domestic animals and human embryonic stem cells.

Author information

1
University of Nottingham, Division of Animal Physiology, School of Biosciences, Sutton Bonington LE12 5RD, UK. chris.denning@nottingham.ac.uk

Abstract

Until recently, precise modification of the animal genome by gene targeting was restricted to the mouse because germline competent embryonic stem cells are not available in any other mammalian species. Nuclear transfer (NT) technology now provides an alternative route for cell-based transgenesis in domestic species, offering new opportunities in genetic modification. Livestock that produce human therapeutic proteins in their milk, have organs suitable for xenotransplantation, or that could provide resistance to diseases such as spongiform encephalopathies have been produced by NT from engineered, cultured somatic cells. However, improvements in the efficiency of somatic cell gene targeting and a greater understanding of the reprogramming events that occur during NT are required for the routine application of what is currently an inefficient process. The ability to reprogramme and genetically manipulate cells will also be crucial for full exploitation of human embryonic stem (hES) cells, which offer unparalleled opportunities in human health and biotechnology. Particularly pertinent are directed differentiation of hES lines to specific cell lineages, production of cells that evade the patient's immune system and ensuring the safety of ensuing transplants. This review will discuss some of the successes, applications and challenges facing gene targeting in livestock and hES cells.

PMID:
12814342
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center