Send to

Choose Destination
Eur J Immunol. 2003 Jul;33(7):1776-87.

Triggering of Toll-like receptors modulates IFN-gamma signaling: involvement of serine 727 STAT1 phosphorylation and suppressors of cytokine signaling.

Author information

Institute of Medical Microbiology and Hygiene, Philipps-University Marburg, Pilgrimstein 2, D-35037 Marburg, Germany.


Microbial stimuli activate cells of the innate immune system by triggering Toll-like receptors (TLR). Activation of macrophages and dendritic cells is further enhanced by secondary signals like IFN-gamma. Here we analyzed the interplay of IFN-gamma and TLR signaling in cells of the innate immune system. Using a STAT1-dependent reporter construct we show that IFN-gamma signaling can be enhanced as well as inhibited by simultaneous stimulation with either defined TLR agonists or whole-bacterial lysates. Short costimulation resulted in the amplification of IFN-gamma signaling and was attributable to the p38 mitogen-activated protein kinase (MAPK)-dependent phosphorylation of signal transducer and activator of transcription (STAT)1 on serine 727. In contrast, prolonged co-incubation as well as pre-incubation with TLR agonists led to an inhibition of IFN-gamma signaling. TLR triggering induced expression of suppressor of cytokine signaling (SOCS)-1, SOCS-3 and cytokine-inducible SH2 domain-containing protein (CIS). Overexpression of SOCS-1 and, to a lesser extend, of SOCS-3 and CIS inhibited IFN-gamma signaling as measured by activation of STAT1. Moreover, pre-incubation with TLR-dependent stimuli impaired IFN-gamma-induced MHC class II regulation but enhanced CD40 and CD86 expression. Taken together, the results indicate a tight interplay between TLR and IFN-gamma signaling pathways which involve induction of SOCS proteins and serine phosphorylation of STAT1.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center